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Abstract-The concept of sensor webs will require a certain 

amount of underpinning to enable the interaction of the various 
constituent components. The SWAMO project is providing an 
intelligent agent based framework for allowing sensor systems 
to intercommunicate via standard interfaces such as SensorML, 
Sensor Web Enablement standards, and web service calls.  The 
culmination of the project will allow for the discovery of sensing 
assets, query capabilities, requesting task feasibilities, and even 
charge the system with direct tasking.  This paper describes the 
work to date on designing and prototyping this framework. 

I. INTRODUCTION 

This document will describe the intent and the current 
status of the SWAMO research project. The NASA Earth 
Science Technology Office (ESTO) Advanced Information 
Systems Technology (AIST) program on Sensor Webs funds 
SWAMO. The period of performance for the project is 
September 2006 – August 2009. SWAMO is roughly 
halfway through its period of performance and has 
significant findings to report related to the status of the 
architecture development and the use of SWAMO on 
existing spacecraft. This document will also contain 
information on how the SWAMO architecture matured from 
its original baseline concept of Model Based Operations. 
Background information covering MBO and its 
implementation on previous NASA spacecraft (Space 
Technology 5 (ST5)) will also be covered to provide context 
for the current evolution of the SWAMO architecture. 

II. BACKGROUND 

Today’s missions within the NASA environment are 
faced with ever increasing complexity in the form of 
multifaceted science goals and constellations of spacecraft. 
There is also the need to reduce the operational costs 
inherent in operating spacecraft. While these goals seem to 
be at odds with each other, there are emerging technologies 
that address both goals, while increasing flexibility of 
mission application. 

As scientists strive to further their fields, often they 
desire to utilize satellite assets in manners for which they 

were not originally designed but which they are fully capable 
of performing. ‘System-of-systems’ is a pervasive concept 
within the Sensor Webs paradigm. Elements can be bound 
together for the benefit of another, more over-arching 
system. Each system has a particular task, or set of tasks, that 
it can perform. By combining the outputs or results from 
several systems, new products can be derived. 

There are several efforts involved with implementing the 
system-of-systems. The first is the consistent, predictable 
break-down of tasks into more atomic, achievable parts. The 
second is the fusion process of assembling the results into the 
desired output. 

While the task of creating such a complex system is 
indeed daunting, the portion being addressed within our task 
is achievable. SWAMO is inherently involved with the 
scheduling, planning, and conflict resolution that occur in a 
system-of-systems environment. The atomic functionality is 
established by the system itself and is known or described to 
the super-system. Our work is involved with the attempt to 
‘fit’ new tasking into the system’s plan of activities. This 
aspect is performed autonomously, yielding an inherently 
more flexible system. 

The SWAMO development team has experience 
developing such system-of-systems based on the concept of 
Model Based Operations (MBO). Our team implemented the 
MBO concept to support autonomous operational control of 
the ST5 mission. This MBO implementation is named the 
Real-time Object Modeling Executive (ROME). ROME was 
utilized by ST5 to support autonomous, “lights out” control 
of the ST5 three-satellite constellation. SWAMO is an 
extension of the ROME framework and MBO concept that 
transfers the control from a centrally controlled ground 
system to a distributed Sensor Web of intelligent agents 
performing autonomous mission management both on board 
the spacecraft and from the ground. MBO, the underlying 
communication infrastructure based on Message Oriented 
Middleware (MOM), and software bus publish/subscribe 
message delivery are discussed in more detail below. 



A. Model Based Operations 
MBO is a concept that creates system-of-systems by 

enabling interoperability among mission operations, 
intelligent and autonomous systems, and end-to-end life 
cycle technologies for diverse future exploration 
applications. An MBO approach to future mission 
development, from concept to operations, promotes software 
reuse, system expandability, and life cycle cost savings. 

The concept of MBO, as shown in Figure 1, utilizes 
models of the spacecraft, or system, being managed. The 
models are used to simulate and predict the system state for 
planning purposes. MBO is designed to be a bottom-up 
methodology that utilizes only the models necessary to 
manage the determined constrained resources. This contrasts 
with the traditional approach of developing an entire system 
model and maintaining it throughout the lifetime of the 
mission. Using MBO, the mission chooses which constrained 
resources to manage, and models them. If management needs 
appear during operations, additional models may be added as 
necessary. Likewise, models can be removed from the 
system without detrimental impact. The MBO architecture 
can provide the following benefits; 
1) MBO is an advanced software modeling, simulation and 

visualization framework supporting simple to complex 
models of spacecraft subsystems developed in 
evolutionary stages throughout design lifecycle and 
deployed in operations. 

2) Models developed throughout the system design process 
migrate seamlessly into operations. Redundancy is 
minimized while fidelity and historical traceability of 
systems is improved. 

3) Detailed models of a complex system provide continuity 
during system design phase, implementation, integration 
and test phase, and throughout a system’s operational 
phase. 

4) Models autonomously update states using live telemetry, 
allowing for a predictive environment utilizing inter-

model communication. This helps operators manage 
complex interfaces among in-space and ground systems 
as performance of subsystems changes or degrades 
throughout mission life. 

5) MBO fuses existing mission support frameworks 
including NASA Goddard Space Flight Center (GSFC) 
developed software bus architectures. 

B. Software Bus Architectures 
Software bus architectures are being widely adopted at 

NASA GSFC for use in satellite mission control centers. 
These architectures allow for plug and play capabilities of 
mission control systems in the operations center. Missions no 
longer need to develop dedicated interfaces between all of 
the systems in the operations center. 

By utilizing a software bus architecture that allows 
systems to publish and subscribe to relevant data, missions 
can concentrate on implementing higher-level requirements. 
Mission control applications can also be updated to newer 
versions with very little impact to the system as a whole. 
Applications must only develop an interface to the software 
bus to interact with all applications in the operations center. 
A view of the shift from dedicated one-to-one interfaces to a 
middleware publish/subscribe system is shown in Figure 2. 
C. ROME on Space Technology 5 

The ST5 mission was a project within the NASA New 
Millennium Program operated at NASA/GSFC for a three-
month period after launch on March 22, 2006. The purpose 
of the project was to validate a number of technologies 
including the MBO approach for autonomous mission 
operations support. ROME was utilized on ST5 to support 
the autonomous mission control requirements. ROME 
managed subsystem models (Power, Solid State Recorder, 
and RF Link) for each of the three ST5 spacecraft to perform 
predictive spacecraft state analysis. Results of the analysis 
were fed back to the mission control planning system for 
possible rescheduling and re-tasking of the spacecraft to 
avoid violations of constrained resources. ROME helped ST5 
satisfy one of its mission requirements for 1 week of “lights 
out” operations where no human operators actively managed 
the three spacecraft. For more information on ROME and its 
operation on ST5, please see the references.1-3 

III. SWAMO ARCHITECTURE OVERVIEW 

The goal of SWAMO is to shift management and control 
of missions to a distributed set of intelligent agents versus a 
centrally controlled architecture, especially with application 
to Sensor Webs. The network of intelligent agents will 
reduce management requirements by utilizing model-based 
system prediction and autonomic model/agent collaboration. 
These agents are distributed throughout the operational 
environment to monitor and manage spacecraft systems. 
Some of the intelligent agents are mobile and thus will be 
able to traverse between on-orbit and ground-based systems. 
Other agents in the network are responsible for encapsulating 
system models to execute simulations of the modeled 
subsystems and components to which they are assigned. 
Using situational awareness, the agents will be able to 
negotiate activities to self-optimize their subsystem or 
component. Furthermore, presented with a set of system 

Figure 1. Model Based Operations 

Figure 2. Dedicated interfaces versus software bus 



goals, the network of agents will collaborate within the 
system to arbitrate the best set of activities to achieve a more 
global set of goals. 

Within the web of agents, there will be specialized agents 
responsible for different tasks. Besides being broken into 
separate functional responsibilities, agents are also separated 
into different levels of scope. These responsibilities apply to 
agents that exist at the system level and to those that exist on 
the platform specific level. System wide agents will need to 
break tasks down into subtasks to be handled at the platform 
level. Platform specific agents are first responsible for 
managing their platform, and for accomplishing sub-goals 
dealt to them from higher level agents. All agents must be 
able to communicate to their peers in the system to 
accomplish each goal. The characteristics of encapsulation 
and abstraction are guiding principles in the design of the 
SWAMO architecture. It is clearly understood that SWAMO 
agents will interact with many and varied operating systems, 
communication mechanisms, and hardware platforms. By 
designing our system to implement functionality at distinct 
boundary interfaces, it will become easier to adapt to new 
environments. 

Users and systems interfacing with SWAMO are 
insulated from implementation details. They need only 
support the external interface and may treat the rest of the 
system as a black box. “I want XXX” is the request, and the 
system does the rest. “Here is your XXX” or “The system 
cannot provide XXX” is the response. 

On the inside, SWAMO utilizes agents over a messaging 
bus fabric that in turn bridges to other platforms, sensors, and 
resources. Various layers prevent SWAMO from being 
dependant on any one implementation of a message delivery 
system. The message delivery system, in turn, deals with the 
nuances of getting the data to and from the various 
constituent components at the hardware level. By 
encapsulating the various layers and interfaces, SWAMO 
becomes easily usable, accessible and understandable by 
external users and systems. 
A. Distributed Operations 

The SWAMO development team is separated over three 
locations; Sentar Inc., Huntsville, Alabama; WVHTC 
Foundation, Fairmont, WV; and GSFC, Greenbelt, MD. 
Each of these locations contains computing resources for 
hosting agents, flight hardware simulators, and interfaces to 
space assets. Because of the geographically separate 
locations and non-heterogeneous ground and flight 
platforms, a distributed operational environment is inherent 
to the SWAMO Sensor Web. One of the main goals for 
SWAMO is to utilize distributed environments to support 
mission operations instead of the traditional centrally 
controlled operation center. SWAMO utilized the disparate 
geographic locations of the development team to act as 
distributed control centers that perform management of 
multiple flight assets. A requirement of distributed 
operations is seamless communication between all entities 
that exist in the operational environment. Networking 
infrastructure and a software bus messaging interface were 
developed to provide the capability for all components of the 
sensor web (systems, agents, users, etc.) to communicate 
throughout the distributed environment. The infrastructure 
supports the publish/subscribe communication paradigms 

allowing for peer-to-peer and one-to-many communication. 
It also allows for user access to the system both locally and 
remote via a thin client interface. This interface will provide 
the capability for users and operators to query the SWAMO 
sensor web for status and capabilities as well as request 
science goals to be executed. To support the communication 
infrastructure the SWAMO Software Bus was created to 
provide a generic interface to all agents and systems 
throughout the Sensor Web. 
B. SWAMO Software Bus 

The SWAMO Software Bus is a generic messaging data 
bus application programming interface (API) that supports 
SWAMO Sensor Web agent and system communication. 
This messaging API is platform independent and is utilized 
by agents existing on both ground and flight based operating 
systems including Windows, Linux and VxWorks. This 
interface provides the capability for the SWAMO agents to 
publish and subscribe to all members of the sensor web 
regardless of location. 

The SWAMO Software Bus not only provides platform 
independence, but it also hides the underlying type of MOM 
API utilized on the given platform. SWAMO currently 
utilizes two different MOM based technologies; one for 
ground systems, Goddard Mission Services Evolution Center 
(GMSEC), and a light weight software bus middleware API 
designed for flight software (FSW) applications, Core Flight 
System and core Flight Executive (CFS/cFE). Both of these 
products were developed at GSFC and have proven 
performance on NASA missions. 

Our development team has experience implementing 
systems and applications that utilize both the GMSEC and 
CFS/cFE APIs on previous NASA missions, which allowed 
easy integration into the SWAMO Bus Architecture. 
However, the SWAMO Software Bus is not locked to these 
technologies and has the ability to quickly add new adapters 
for additional software bus and middleware interfaces. 

The successful development of the SWAMO Software 
Bus allows our team to develop agents, systems, and user 
interfaces to a single messaging API. The API adapters take 
care of converting SWAMO messages to the appropriate 
GMSEC or cFE bus interface based on where the agent is 
residing (ground or space). The SWAMO Software Bus was 
developed in C/C++ to take advantage of the C/C++ 
interfaces that are available through GMSEC and cFE. 
C/C++ standard libraries are also highly compatible with 
standard ground and flight based operating systems 
(Windows, Linux, and VxWorks). 
C. SWAMO XML Message Definitions 

A standard set of SWAMO XML-based messaging 
definitions was created to provide a common language for 
the agents to use for communicate over the software bus. The 
messaging definitions are split into several types that 
encapsulate agent and sensor web functions including; 

1) Event Message – utilized by agents to broadcast 
events to the framework that may be of importance to 
other agents to initiate actions. 

2) Log Message – provides the ability for agents to 
broadcast system health, status, and message receipts 
to the framework for monitoring purposes. 



3) Request Message – allows agents to request services 
from other agents in the framework, used for peer-to-
peer interaction. 

4) Reply Message – to complete peer-to-peer 
communication agents can send this message to reply 
to requested services with request status and resultant 
data. 

5) Mnemonic Value Messages – this message type 
encompasses request, reply, and data messages that 
support telemetry mnemonic distribution to all agents. 
Agents utilize the Mnemonic Request to request 
values; Mnemonic Reply for retuning request status; 
Mnemonic Data to contain telemetry values. 

D. SWAMO Models 
In the SWAMO architecture, a model is a physical, 

mathematical, or otherwise logical representation of a 
system, entity, phenomenon, or process. Models are used for 
a variety of settings, such as simulations, to make technical 
and managerial decisions. Generating output from a model 
requires simulation. So in the case of a satellite operating in 
space, models can be built to represent the behavior of the 
whole satellite system or some of its subcomponents. 

SWAMO utilizes models in two modes of operations, 
predictive and reactive. Predictive models are built to 
simulate future events and states, allowing other systems or 
agents within the framework to make corrective decisions 
based on the predicted information. Reactive models are 
utilized to monitor the current state of a system and perform 
immediate action based on near real-time events. 

All models that exist in the SWAMO Sensor Web are 
built to a single interface definition. This allows agents to 
initialize, simulate, interrupt and retrieve results from any 
model without knowledge of the models function or intent. 
This also allows for “plug and play” of models into and out 
of the Sensor Web. SWAMO users can build models based 
on need and requirements; there is no constraint to model 
complexity except for the computing hardware limitations 
upon which the model will be exercised. 
E. Flight Platforms and Simulators 

Our development team is utilizing subsystem models of 
the flight platforms and flight simulators that are available to 
the project. The flight platforms that are being used include 
the ST5 FlatSat, two VxWorks flight hardware simulators, 
and the on-orbit MidSTAR satellite. 

F. SWAMO Agents 
Responsibility for the management of the resources that 

make up the Sensor Web will rest with a network of 
intelligent agents. Principle functions of the agent framework 
include; agent and system job tasking, resource availability 
determination, platform planning and scheduling, model 
availability management/simulation, telemetry stream 
decommutation, agent telemetry mnemonic delivery, and 
flight platform commanding for health maintenance and 
recovery. The SWAMO development team has identified 
several agent types that will be assigned these 
responsibilities. Additional management responsibilities, as 
well as previously defined unpractical tasks, may be 
discovered during the implementation of the SWAMO 
Sensor Web. New agent types can be created and 
responsibility assignment to specific agents can be changed. 
These attribute adjustments are easily made by plug and play 
nature of the agents and their capabilities provided by the 
SWAMO framework. The following is the current list of 
SWAMO agents and their high level responsibilities; 

1) Planning Agent – maintains platform timeline and 
provides notification of command events. 

2) Resource Agent – monitors active resource use for a 
given platform. 

3) Execution Agent – initializes, executes, and packages 
output of SWAMO models. 

4) Reporting Agent – provides external interface to 
SWAMO data including events, health status, and 
model output. 

5) Executive Agent – responsible for high level goal 
decomposition and task dissemination. 

6) Repository Agent – manages discoverable registry of 
agent types, model types, and message types. 

7) Telemetry Agent – handles telemetry stream parsing, 
mnemonic value data distribution, and bus-to-bus 
bridge connection. 

IV. SWAMO ARCHITECTURE STATUS 

Approximately halfway through the period of 
performance for the SWAMO project several significant 
achievements have already been completed. Substantial 
progress has been made with the development of the 
SWAMO architecture and its functional capabilities 
including network connections between the development 
team facilities, development and integration of models based 
on spacecraft subsystems, and iterative deployment of agents 
to perform management and monitoring functions of the 
SWAMO Sensor Web. To demonstrate the functions of the 
SWAMO architecture several Use Case scenarios were 
created that take advantage of existing SWAMO agents, 
models and currently available flight platforms/simulators. 
A. Distributed Network Setup and Software Bus Bridge 

Network infrastructure connections were created to 
support closed loop communication between the 
development team facilities. The networking hardware is 
housed at the WVHTF facility in Fairmont, WV, and allows 
for connections from NASA GSFC and Sentar Inc, to the 
SWAMO Software Bus routing hardware, flight simulators, 
web interface, project website, ftp site, and source code 
version control tools. The network is secure to protect the 
integrity of the equipment and data existing on the network. 



 

 
Figure 3.  Interface layers in SWAMO 

 
Figure 3 references the high-level stack view of the SWAMO 
Software Bus Messaging API. The API was completed 
during the first year of the project. All agents and systems 
created for the Sensor Web utilize the API for 
communication. Another project milestone was the 
development of a ground-to-flight bus bridge to provide 
seamless communication between agents existing on ground 
platforms and agents existing on a flight platform simulator 
or actual spacecraft (i.e. MidSTAR). SWAMO hides the 
underlying implementation of the bus bridge from agent 
communication via bridge interfaces built into the Telemetry 
Agent. The Telemetry Agent handles all requests for 
telemetry within SWAMO. 

Two Telemetry Agent bridge interfaces were 
implemented. The first is dependent on a previously 
developed capability which enables communication between 
components on a GMSEC ground system and cFE 
applications on the flight platform. This capability is 
achieved by utilizing the Advanced Spacecraft Integration 
and System Test Software (ASIST), a real-time command 
and control system for spacecraft development, integration, 
and operations. ASIST listens to the GMSEC bus for 
incoming directives, matches executed command mnemonics 
to a command database, applies the CCSDS header, and 
outputs a command packet to the Data Center (DC). The DC 
forwards the command packet to the Command Ingest (CI) 
application onboard the flight platform via User Datagram 
Protocol Internet Protocol (UDP/IP). The CI application 
receives the command packet and publishes the data onto the 
cFE Software Bus. The Telemetry Output (TO) application is 
setup to listen to the cFE bus traffic and to send any 
messages that need to be delivered to a ground component. 
On the downlink, TO receives a message from the cFE bus 
and sends it to the DC via UDP/IP. The telemetry packet is 
forwarded to ASIST where it is matched to a telemetry 
database and decommutated to data points in a telemetry user 
table. ASIST can then publish telemetry values to the 
GMSEC bus on request. 

The second interface was developed by the SWAMO 
team to provide the capability to communicate with non-
CCSDS based telemetry data and without the requirement of 
the ASIST system. A UDP bridge interface was created to 
utilize the IP in space connection provided by the MidSTAR 
satellite. A Telemetry Agent on the ground communicates 
via UDP to a pier Telemetry Agent on board the flight 
platform. The Telemetry Agent UDP interface has the ability 
to add packet parser functionality based on mission specific 
packet format. The parsers also utilize an XML configuration 
file that provides mission specific mnemonic value 
definitions. The received telemetry stream is parsed for the 
mnemonic values and delivered to the requesting agents. 

B. Agent Development 
The current implementations of the SWAMO agents vary 

in their level of maturity. Agents were implemented from the 
bottom based on low level functional needs of the Sensor 
Web. Reporting, model execution, telemetry data access, and 
bus bridge capabilities had to be developed first before 
higher level agents that handle sensor web goal 
dissemination and model capability discovery can be 
effective. 
C. Model Development 

Currently four models exist in the SWAMO Sensor Web. 
Three of the models were utilized by the ROME framework 
on the ST5 mission to support autonomous operations and. 
These models where created with MATLAB/Simulink and 
have been converted to stand alone executables for 
integration into the SWAMO architecture. The ST5 models 
are models of mission identified constrained resources and 
include the Solid State Recorder, RF Link Margin, and 
Power Subsystem. 

The fourth model that is utilized in SWAMO is a reactive 
power model created to address overheating battery issues 
with the MidSTAR satellite. MidSTAR has a power positive 
problem because of constant sunlight exposure to the solar 
panels. Current operations involve MidSTAR operators 
turning on and off two on board power amps to dissipate 
power levels and cool the batteries. With guidance from the 
MidSTAR team the model was created to mimic current 
operations. 

The model along with cFE, the Execution Agent, and the 
Telemetry Agent were loaded onto the MidSTAR spacecraft 
in late March. SWAMO is currently operating in a log only 
mode, where all commanding actions that would be 
performed by SWAMO are stored in log files on board for 
downlink. As the log information is received, the MidSTAR 
operators and the SWAMO team have been evaluating the 
commands to ensure proper function of the model. An 
updated version of the model was scheduled for uplink and 
installation at the end of April and we will once again 
operate in log mode. Once the model’s actions have been 
validated, the SWAMO Sensor Web will be autonomously 
controlling power management onboard the in-flight 
MidSTAR satellite. 
D. User Interface Development 

The Reporting Agent provides an outside interface to the 
SWAMO Sensor Web by allowing all SWAMO data to be 
accessed (i.e. agent health and status information, software 
bus traffic, and model output). This information is valuable 
to both users and operators to get a picture of the events and 
status of Sensor Web. An XML-RPC1 interface was built 
into the Reporting Agent to provide web service call type 
access. This allows for quick development of web based 
graphical tools to more clearly illustrate SWAMO functions. 

The current FLEX UI2 consists of two displays; Bus 
Traffic Monitor and Agent Health Monitor. The bus traffic 
monitor provides a log of all message generate via the 
SWAMO bus. Users can query message header information 
as well and drill down into the XML content of all messages. 

                                                           
1 XML-RPC standard web link - http://www.xmlrpc.com/ 
2 Adobe FLEX web link - http://www.adobe.com/devnet/flex/ 



This is a quick way to view events that occur in SWAMO. 
The Agent Health Monitor provides a SWAMO Topology 
representation of where agents exist in the SWAMO 
environment (i.e. platform, IP address, etc). It also provides 
information about the state of the agents (i.e. is the agent 
producing heartbeats, what events have been generated by 
the agent, when did the agent startup, etc). 

V. USE CASE DEVELOPMENT 

Several use cases have been developed to take 
advantages of the functionality provided by SWAMO as well 
as the flight platforms available to the project. Two platforms 
are currently available to SWAMO and provide the 
opportunity to demonstrate autonomous management actions 
of ST5 FlatSat and the in flight MidSTAR satellite. The use 
cases will utilize models of the two flight platforms to 
autonomously manage constrained resources. The use case 
for ST5 management will mimic the ST5 operations control 
flow of the Solid State Recorder, but transfer the 
responsibility of management activities to the web of 
intelligent agents. The MidSTAR use case was created 
during the SWMAO project and illustrates SWAMO 
capabilities to not only manage multiple assets but also ease 
the integration of new constrained resource models. 
A. Predictive ST5 Solid State Recorder 

During the mission life of ST5, ROME and a model of 
the ST5 Solid State Recorder (SSR), helped to predict 
recorder overflows so that corrective action could take place 
in the Autonomous Mission Planning System (AMPS)3. The 
ST5 SWAMO use case performs these same functions, but 
utilizing the SWAMO Sensor Web. The Planning Agent 
contains a timeline of events and commands for the ST5 
FlatSat. The Planning Agent is activated at the Sentar facility 
and connected to the SWAMO Software Bus. As events 
occur in the timeline they are published to the bus for ingest 
by subscribing agents. When the acquisition of signal (AOS) 
event is published the Telemetry Agent requests telemetry 
data based on mnemonics listed in the ST5 Telemetry Agent 
configuration file. The Execution Agent responsible for the 
management of the SSR model will then request a telemetry 
stream of values specific to the SSR from the Telemetry 
Agent. The SSR is a predictive model; therefore, simulations 
are started and executed based on events in the timeline. 
When the Planning Agent published at SSR execution event, 
the SSR model is initialized by the Execution Agent with 
current SSR telemetry values. The SSR model will generate 
threshold violation times and values. The model will also 
generate SSR command requests to release data at specific 
times to avoid the threshold violations. When the model has 
completed simulation the Execution Agent retrieves the 
results and publishes them to the bus for subscribing agents. 
The command request results are then ingested by the 
Planning Agent and inserted into the running timeline. When 
real time commands are encountered in the timeline and 
published to the bus by the Planning Agent, they are 
forwarded to the ASIST system. ASIST can then command 
ST5 FlatSat. Commands to release data will be 
autonomously generated by the SWAMO agent collaboration 

                                                           
3 AMPS GMSEC factsheet - 

gmsec.gsfc.nasa.gov/factSheets/GMSECamps.pdf 

and keep the ST5 SSR threshold violations from occurring 
without operator intervention. 
B. Reactive MidSTAR Power Management 

The first phase of deployment onto MidSTAR occurred 
3/10/2007 and included cFE, the Telemetry Agent, the 
Execution Agent and the MidSTAR Power Model. The 
power model will be utilized to regulate the MidSTAR 
battery voltage and temperature. Start and shutdown scripts 
for the SWAMO agent framework have been created and can 
be manually controlled from the ground. 

When the SWAMO agent framework is started, the 
Telemetry Agent and Execution Agent are initialized. They 
each load a configuration file and the Telemetry Agent’s 
configuration specifies a UDP listen port number to receive 
on board telemetry and a list of mnemonics to parse from the 
telemetry stream. A current MidSTAR application, Sysmon, 
will send telemetry to the predetermined port. The Execution 
Agent’s configuration will specify what model to load 
(Power Model), what mnemonics are required for that model, 
and what “mode” to operate the model in (reactive or 
predictive). The Execution Agent will then attempt to load 
the specified model object and request the given mnemonics 
from the SWAMO bus. The Telemetry Agent will receive 
the request, check for the validity of the requested 
mnemonics, and reply with a success or failure. If invalid 
mnemonics are requested, a failure will be returned and the 
request ignored. If the mnemonics are determined to be valid, 
a success reply is returned and the Execution Agent’s request 
information will be stored by the telemetry agent in a 
Telemetry Requestor list. This list stores the requestors 
name, type, unique id, and mnemonic list. 

Each telemetry packet published by Sysmon, on 10 
second intervals, to the Telemetry Agent is parsed for the full 
set of Telemetry Agent configuration mnemonics and their 
values stored in a Mnemonic Value Table. The Telemetry 
Agent then iterates through its Telemetry Requestor list and 
publishes a SWAMO Mnemonic Value message with the 
updated value of each mnemonic to each requestor. 

The Execution Agent will receive the Mnemonic Value 
Messages and update the Power Model via a standardized 
Model Interface. The power model now has access to live 
telemetry. It is designed to be a state machine with 3 possible 
states-- normal, medium, and high. These states are 
determined by four battery voltage values received from the 
Mnemonic Value Message. The model has the ability to turn 
on and off two power amplifiers (A and B) on MidSTAR to 
regulate the voltage and temperature. 

The previously explained agent functions are also 
mirrored on the ground with a Telemetry Agent, Execution 
Agent, and Power model (via an Execution Agent). The 
Telemetry Agent provides the data connection from 
MidSTAR to the ground via a UDP forward from the ground 
station. Although run in parallel the ground based model is 
only accurate when in contact with MidSTAR and receiving 
telemetry. 
C. Future Development 

The models fielded on MidSTAR are currently reactive 
in nature. They observe, by subscribing to mnemonics, the 
state of the batteries and solar panels. Based on observations, 
the model takes action to prevent battery and power system 
damage. While this is sufficient for the MidSTAR mission, it 



lacks in applicability to other NASA missions. Most 
missions require a planned timeline of events to manage the 
spacecraft activity and systems. 

To provide a relevant demonstration, the MidSTAR 
system is going to have a planned management activity 
added. This will allow the ground system to generate a power 
management timeline, and synchronize that timeline with the 
vehicle. The vehicle will prosecute the timeline, while 
altering it to adapt to dynamic situations on the craft. Agents 
will generate the timeline, in this case based upon solar 
illumination predicts, and monitor the systems onboard. 

While in contact with the ground systems, onboard agents 
and operation center agents communicate to resolve 
discrepancies. Ground based agents can then use any 
information about the changes the onboard agents made to 
make the timeline feasible to design better predicted 
timelines in the future. 

MidSTAR will be used to actively demonstrate power 
system management. This case could apply to any mission, 
but extends well to other vehicle systems. If the system were 
a sensor, its management could be modeled in a similar way. 
Not only does it extend to other spacecraft, it also applies to 
the large variety of Earth sensing platforms such as 
unmanned aerial vehicles, remote transponders, and sea 
buoys. 

VI. CONCLUSION 

The architecture being built will enable a future 
generation of coordinated science collection, collaboration, 
and calibration. SWAMO is a piece of the Sensor Web 
puzzle that will enable scientists to collect data in ways never 
before possible. Standards based accessibility to data sources 
drives new research with more fidelity. Sensor Webs provide 
the ‘black box’ that insulates users from the nuances of 
requesting data from disparate sources. With SWAMO, the 
onus is on the agent infrastructure to negotiate for platform 
resources to achieve a desired goal. 

Initial prototypes and demonstrations are yielding 
exciting results that indicate a successful outcome. By 
utilizing the MidSTAR platform, and the FlatSat simulators, 
we are making strides toward our infrastructure goals. With 
demonstrations and operational capability, the SWAMO 
effort has escalated from NASA Technology Readiness 
Level (TRL) 3 to 6 in the past 18 months. Over the course of 
the final 18 months, we expect to remain at 6, but to add 
extensive capabilities to prove viability to developing 
missions. 
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